Search the Community
Showing results for tags 'uniformly angularly accelerated motion'.

What is the angular acceleration of a compact disc that turns through 3.25 revolutions while it uniformly slows to a stop in 2.27 seconds? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:52 Determining which Uniformly Angularly Accelerated Motion (UαM) equation to use 1:54 Using a second UαM equation Multilingual? Please help translate Flipping Physics videos! Next Video: Human Tangential Velocity Demonstration Previous Video: Uniformly Angularly Accelerated Motion Introduction Please support me on Patreon! Thank you to Christopher Becke for being my Quality Control Team for this video.

 demonstration
 angularly
 (and 3 more)

Name: Introductory Uniformly Angularly Accelerated Motion Problem  A CD Player Category: Rotational Motion Date Added: 20170723 Submitter: Flipping Physics What is the angular acceleration of a compact disc that turns through 3.25 revolutions while it uniformly slows to a stop in 2.27 seconds? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:52 Determining which Uniformly Angularly Accelerated Motion (UαM) equation to use 1:54 Using a second UαM equation Multilingual? Please help translate Flipping Physics videos! Next Video: Human Tangential Velocity Demonstration Previous Video: Uniformly Angularly Accelerated Motion Introduction Please support me on Patreon! Thank you to Christopher Becke for being my Quality Control Team for this video. Introductory Uniformly Angularly Accelerated Motion Problem  A CD Player

 demonstration
 angularly
 (and 3 more)

Using Uniformly Accelerated Motion (UAM) as a framework to learn about Uniformly Angularly Accelerated Motion (UαM). Just like UAM, UαM has 5 variables, 4 equations and if you know 3 of the UαM variables, you can determine the other 2 UαM variables, which leaves you with 1 … Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:15 Introducing Uniformly Angularly Accelerated Motion! (UαM) 0:38 Reviewing Uniformly Accelerated Motion 1:22 When can we use the UαM Equations? 2:24 The four UαM Equations 4:20 Examples of objects in UαM 4:48 Average and instantaneous angular velocity and the UαM equations Multilingual? Please help translate Flipping Physics videos! Next Video: Introductory Uniformly Angularly Accelerated Motion Problem  A CD Player Previous Video: Angular Accelerations of a Record Player Please support me on Patreon! Thank you to Scott Carter, and Christopher Becke for being my Quality Control Team for this video.

 variable
 demonstration
 (and 5 more)

Name: Uniformly Angularly Accelerated Motion Introduction Category: Rotational Motion Date Added: 20170717 Submitter: Flipping Physics Using Uniformly Accelerated Motion (UAM) as a framework to learn about Uniformly Angularly Accelerated Motion (UαM). Just like UAM, UαM has 5 variables, 4 equations and if you know 3 of the UαM variables, you can determine the other 2 UαM variables, which leaves you with 1 … Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:15 Introducing Uniformly Angularly Accelerated Motion! (UαM) 0:38 Reviewing Uniformly Accelerated Motion 1:22 When can we use the UαM Equations? 2:24 The four UαM Equations 4:20 Examples of objects in UαM 4:48 Average and instantaneous angular velocity and the UαM equations Multilingual? Please help translate Flipping Physics videos! Next Video: Introductory Uniformly Angularly Accelerated Motion Problem  A CD Player Previous Video: Angular Accelerations of a Record Player Please support me on Patreon! Thank you to Scott Carter, and Christopher Becke for being my Quality Control Team for this video. Uniformly Angularly Accelerated Motion Introduction

 variable
 demonstration
 (and 5 more)

Calculus based review and comparison of the linear and rotational equations which are in the AP Physics C mechanics curriculum. Topics include: displacement, velocity, acceleration, uniformly accelerated motion, uniformly angularly accelerated motion, mass, momentum of inertia, kinetic energy, Newton’s second law, force, torque, power, and momentum. Want Lecture Notes? Content Times: 0:12 Displacement 038 Velocity 1:08 Acceleration 1:33 Uniformly Accelerated Motion 2:15 Uniformly Angularly Accelerated Motion 2:34 Mass 3:19 Kinetic Energy 3:44 Newton’s Second Law 4:18 Force and Torque 5:12 Power 5:45 Momentum Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Universal Gravitation Review (Mechanics) Previous Video: AP Physics C: Rotational Dynamics Review  2 of 2 (Mechanics) Please support me on Patreon! Thank you to Sawdog for being my Quality Control individual for this video.

Name: AP Physics C: Rotational vs. Linear Review (Mechanics) Category: Rotational Motion Date Added: 20170428 Submitter: Flipping Physics Calculus based review and comparison of the linear and rotational equations which are in the AP Physics C mechanics curriculum. Topics include: displacement, velocity, acceleration, uniformly accelerated motion, uniformly angularly accelerated motion, mass, momentum of inertia, kinetic energy, Newton’s second law, force, torque, power, and momentum. Want Lecture Notes? Content Times: 0:12 Displacement 038 Velocity 1:08 Acceleration 1:33 Uniformly Accelerated Motion 2:15 Uniformly Angularly Accelerated Motion 2:34 Mass 3:19 Kinetic Energy 3:44 Newton’s Second Law 4:18 Force and Torque 5:12 Power 5:45 Momentum Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Universal Gravitation Review (Mechanics) Previous Video: AP Physics C: Rotational Dynamics Review  2 of 2 (Mechanics) Please support me on Patreon! Thank you to Sawdog for being my Quality Control individual for this video. AP Physics C: Rotational vs. Linear Review (Mechanics)

Calculus based review of instantaneous and average angular velocity and acceleration, uniformly angularly accelerated motion, arc length, the derivation of tangential velocity, the derivation of tangential acceleration, uniform circular motion, centripetal acceleration, centripetal force, nonuniform circular motion, and the derivation of the relationship between angular velocity and period. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:10 Instantaneous and Average Angular Velocity and Acceleration 1:14 Uniformly Angularly Accelerated Motion 2:16 Arc Length 3:22 Tangential Velocity Derivation 4:29 Tangential Acceleration Derivation 6:03 Uniform Circular Motion and Centripetal Acceleration 8:04 Centripetal Force 9:20 NonUniform Circular Motion 10:21 Angular Velocity and Period Relationship Derivation Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Rotational Dynamics Review  1 of 2 (Mechanics) Previous Video: AP Physics C: Momentum, Impulse, Collisions and Center of Mass Review (Mechanics) Please support me on Patreon! Thank you to Natasha Trousdale, Aarti Sangwan, and Jen Larson for being my Quality Control team for this video.

 centripetal acceleration
 centripetal
 (and 13 more)

Name: AP Physics C: Rotational Kinematics Review (Mechanics) Category: Uniform Circular Motion Date Added: 20170409 Submitter: Flipping Physics Calculus based review of instantaneous and average angular velocity and acceleration, uniformly angularly accelerated motion, arc length, the derivation of tangential velocity, the derivation of tangential acceleration, uniform circular motion, centripetal acceleration, centripetal force, nonuniform circular motion, and the derivation of the relationship between angular velocity and period. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:10 Instantaneous and Average Angular Velocity and Acceleration 1:14 Uniformly Angularly Accelerated Motion 2:16 Arc Length 3:22 Tangential Velocity Derivation 4:29 Tangential Acceleration Derivation 6:03 Uniform Circular Motion and Centripetal Acceleration 8:04 Centripetal Force 9:20 NonUniform Circular Motion 10:21 Angular Velocity and Period Relationship Derivation Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Rotational Dynamics Review  1 of 2 (Mechanics) Previous Video: AP Physics C: Momentum, Impulse, Collisions and Center of Mass Review (Mechanics) Please support me on Patreon! Thank you to Natasha Trousdale, Aarti Sangwan, and Jen Larson for being my Quality Control team for this video. AP Physics C: Rotational Kinematics Review (Mechanics)

 centripetal acceleration
 centripetal
 (and 13 more)
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.